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ABSTRACT

X-energy, LLC, has initiated conceptual design of a high-temperature,
pebble-bed reactor, and requested that Idaho National Laboratory (INL) prepare a
conceptual design for irradiating several fuel pebbles in the Advanced Test
Reactor (ATR). The proposed fuel for the X-energy reactor utilizes tristructural-
isotropic-coated fuel particles of the same specifications as those used in the U.S.
Department of Energy-sponsored Advanced Gas Reactor (AGR) fuel tests, which
have been irradiated in the ATR since 2006. The X-energy test has been denoted
XE-6/7/8 based on nomenclature from the AGR fuel-test series. Three tests will
be combined into one test train: XE-6 constitutes the fuel qualification test,
whose aim is to demonstrate fuel performance at the upper end of prototypical
reactor conditions; XE-7 is designated a “margin test” and is expected to
demonstrate fuel integrity at conditions substantially beyond reactor operating
conditions; and XE-8 incorporates designed-to-fail particles in order to release
fission products and help validate fission product release codes. The XE series of
experiments would consist of multiple separate capsules that would be irradiated
simultaneously. Each capsule would have its own inert sweep-gas atmosphere
with individual on-line temperature monitoring. The sweep-gas effluent from
each capsule would also have online fission product monitoring to track
performance of the fuel in each individual capsule during irradiation. INL
proposes a design consisting of six capsules, with four capsules housing a single
pebble and two with double pebbles for a total of eight pebbles in the test train.
The test train diameter is 9.55 cm, while the overall length is about 109 cm. A
replaceable external neutron filter would be used to tailor the neutron flux.
Instrumentation for the XE-6/7/8 test would be similar to the AGR-5/6/7 test,
consisting of approximately seven 1.5 mm thermocouples per capsule and four
fluence wires external to the capsule.

The scoping physics and thermal analyses performed for this study indicate
that the experiment goals can likely be met in approximately 450 days of
irradiation (similar to AGR-5/6/7). Depending on the final design configuration
and refinements of the requirements, it may be possible to shorten the irradiation
period by one ATR irradiation cycle.
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Conceptual Design Report for the
XE-6/7/8 Experiment in the NE Flux Trap

1. INTRODUCTION

X-energy, LLC, is currently working toward a conceptual design for a high-temperature, pebble-bed
reactor, and requested that Idaho National Laboratory (INL) prepare a conceptual design for irradiating
several fuel pebbles in the Advanced Test Reactor (ATR) (see Figure 1). This report documents the
conceptual design.

The proposed X-energy reactor uses tristructural isotropic (TRISO)-coated fuel particles of the same
specifications as those used in the U.S. Department of Energy-sponsored Advanced Gas Reactor (AGR)
fuel tests, which have been run in the ATR since 2006. The AGR-5/6/7 test is the final test in the series
and began irradiation in February 2018. Many features of the AGR-5/6/7 experiment were incorporated
into this conceptual design. The X-energy test has been denoted XE-6/7/8 based on nomenclature from
the AGR fuel test series. As the name suggests, three basic test objectives will be combined into one test
train: XE-6 constitutes the fuel qualification test, whose aim is to demonstrate fuel performance at the
upper end of prototypical reactor conditions; XE-7 is designated a “margin test” and its purpose is to
demonstrate fuel integrity at conditions substantially beyond reactor operating conditions; and XE-8
incorporates designed-to-fail (DTF) particles in order to release fission products and help validate fission
product transport codes. The XE series of experiments would consist of multiple separate capsules that
would be irradiated simultaneously. Each capsule would have its own inert sweep-gas atmosphere with
individual on-line temperature monitoring. The sweep-gas effluent from each capsule would also have
online fission product monitoring to track performance of the fuel in each individual capsule during
irradiation. Similar to the AGR-5/6/7 test train, the XE-6/7/8 test will be irradiated in the ATR northeast
flux trap irradiation position.

Figure 1. The Advanced Test Reactor.



2. SCOPE

The XE-6/7/8 irradiation experiment will be configured as an instrumented lead, which requires
extensive support equipment external to the reactor vessel. However, this conceptual design covers only
the in-tank assembly (also known as the test train). It is expected that the AGR-5/6/7 support equipment
outside of the reactor vessel will be available for use by the XE-6/7/8 experiment. Conceptual level
neutronic and thermal analyses were performed to support preparation of the mechanical design concept
and the discussion herein. The analyses should be taken as scoping in nature. Confirmatory analyses are
required prior to formal design decisions.

2.1 Experiment Objectives and Constraints

This conceptual design was based on the requirements established in the Functional and Operational
Requirements (FOR) [1] for this experiment. A summary of these requirements is provided below:

1. Irradiate 8 spheres (pebbles). [A detailed description of the pebbles and the fuel particles themselves
is provided in Section 2.5.]

2. The capsules on the ends of the test train will only contain a single sphere.
3. The XE-8 pebble shall be placed at the bottom of the test train.

4. The XE-7 pebble shall be placed at or near core mid-plane so that it receives the highest neutron flux
in the test train.

5. The irradiation shall be completed in 500 full-power days or fewer.

6. Provide multiple thermocouples (six or more) per capsule to help ensure several thermocouples in
each capsule survive the entire irradiation period.

7. The maximum particle power limit is 300 mW. This is essentially a restraint on burnup rate and
irradiation acceleration.

8. Burnup, fast fluence, and particle temperature distribution goals are provided in Table 1 and Table 2.

Table 1. Burnup and Fast Fluence Goals for XE-6/7/8.

Burnup Fast Fluence
Pebble (%FIMA?) (n/cm?)
Center four pebbles (three XE-6 and XE-7) >16 >4x 10*...<7.5x 10*
Four pebbles on ends of test (three XE-6 and XE-8) >10 >2 x 10*
Fissions per Initial Metallic Atom.
Table 2. Fuel Particle Temperature Distribution.
Capsules Time Averaged (TA) Temperature Distribution (°C)

500 — 700 for about 20% of the fuel particles

700 — 900 for about 20% of the fuel particles
XE-6 (4 capsules/6 pebbles)

900 — 1050 for about 30% of the fuel particles

1050 — 1200 for about 30% of the fuel particles

XE-7 (1 capsule/1 pebble) 1100 — 1350 for about 80% of the fuel particles

XE-8 (1 capsule/1 pebble) 900 — 1100 for about 80% of the fuel particles

Table 2 represents a goal particle distribution. It is not expected that it will be achieved exactly.



9. The configuration of the XE-8 capsule is provided below:

The XE-8 capsule serves a similar function for X-Energy as AGR-3/4 did for the AGR program,
which is to provide fission product migration data in nuclear graphite at prototypical operating
temperatures. As such, the configuration of the XE-8 capsule must be different than the others. Figure 2
provides a basic schematic of this capsule.
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Figure 2. XE-8 Elevation View.

In this layout, a spherical graphite shell denoted as Region 1 in Figure 2, would be placed between the
fuel pebble and the cylindrical cups, termed Region 2. Additionally, a small clearance gap would be
incorporated between Region 1 and Region 2 to reduce the temperature in Region 2 so that it can serve as
a fission product sink (similar to what was done in the AGR-3/4 experiment). This scheme is designed to
provide an approximation of a 1-D transport situation. For this capsule, the temperature of interest is
likely the Region 1 graphite, rather than the fuel temperature. The goal temperature of Region 1 is



expected to be approximately 800°C+/-50°C, while the Region 2 temperature is approximately 550°C+/-
50°C.

Additional constraints (or potential constraints) were identified by the design team during this design
study and are listed below:

¢ Controllability of the fuel temperature. Very high heat rates require small control gas gaps. As
design gas gaps decrease, machining tolerances and shrinkage of the graphite holders during
irradiation become more and more important, causing uncertainties in the true size of the gas gaps and
great difficulty controlling temperatures. Based on the AGR series of experiments, the minimum gas
gap for effective experiment temperature control is about 0.025 cm. This constraint comes into play in
determining the maximum fuel heat rate that can be tolerated.

e ATR northeast lobe power. Each of the four outer ATR lobes can be controlled somewhat
independently of the others; however, there are limits to the mismatch between lobes. Based on
typical ATR operating conditions, the lowest power at which the northeast lobe can be operated is
13 MW. For design purposes, the minimum lobe power is typically assumed to be 14 MW, while the
maximum is typically assumed to be approximately 20 MW.

2.2 Test Train Overview

XE-6/7/8 will be an instrumented lead-type experiment with on-line active temperature control and
fission product monitoring of the effluent gas. The overall concept for temperature control of the
experiment capsules, the temperature control system design, and the fission product monitoring system
design are all essentially identical to those used on AGR-3/4 and AGR-5/6/7. The experiment capsules
use an insulating gas jacket with variable mixtures of helium and neon sweep gases to control fuel
temperatures in each capsule during irradiation.

Instrumented lead experiments are called such because a conduit is established between the in-core
portion of the experiment and the vessel boundary—in this case, the top head of the reactor. Because of
the large diameter of the fuel specimens (6-cm pebbles), only one high-flux position in the ATR can
accommodate the experiment—the northeast flux trap, as shown in Figure 3. There is an existing vessel
penetration directly above the northeast flux trap; therefore, the lead-out would consist of straight sections
of pipe passing directly upward and out of the ATR vessel, as shown in Figure 4.

The northeast flux trap is an ideal position for this type of fuel experiment because power can be
varied over the duration of the test. The lobe power can be increased from 14 to 20 MW. As the fuel
fissile content decreases and the heat rate drops, the lobe power can be increased to compensate; however,
there is not enough adjustment to totally compensate for the heat-rate drop off, so other means are
necessary, such as replaceable filters.
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2.3 In-Core Configuration

Due to the large diameter of the pebbles, the XE-6/7/8 capsule diameter will be about 35% larger than
AGR-5/6/7 (9.55 cm versus 7.02 cm). This larger diameter will displace considerably more water than
was displaced by the AGR-3/4 or AGR-5/6/7 experiments, resulting in a harder neutron spectrum, other
factors being equal.

The AGR-3/4 and AGR-5/6/7 experiments incorporated external neutron filtering, and this conceptual
design incorporates an external filter similar to that used for AGR-5/6/7 as illustrated in Figure 5. The
neutronics studies performed for this design indicate that very little filtering is required (or desired — so as
not to harden the spectrum too much). The filter consists of simply a stainless steel sleeve. It serves the
dual purpose of absorbing some thermal neutrons, and it also supports the test laterally in the flux trap.

This arrangement allows the neutron filtering to be changed (reduced) at the program’s discretion as
the experiment progresses. For AGR-5/6/7, two different filters have been constructed, and they can be
changed to maximize fission rate while staying within a compact heat-rate range that can be
accommodated by gas-blend adjustments. The same strategy is proposed for XE-6/7/8 (i.e., it appears that
two filters would be sufficient to provide the adjustment necessary to compensate for fuel burnup). The
filters for XE-6/7/8 would not incorporate any hafnium, but rather be simply solid stainless steel cylinders
of two thicknesses. For the early irradiation cycles, the filter would be 0.45 cm in the middle section and
reduced to 0.32 cm on the ends. For the later irradiation cycles, the filter would be 0.32 cm throughout its
length. This strategy will have the effect of increasing the burnup on the capsules at the top and bottom
relative to the capsules near core mid-plane. See Section 2.4 for further details of the changeout schedule
of the two filters.
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(FULL LENGTH CONTINUQUS)

Figure 5. XE-6/7/8 test train cross section.

An elevation cross-section of the in-core portion of the test is shown in Figure 6. There are six
separate capsules, with four housing a single pebble and two with double pebbles, for a total of eight
pebbles in the test train. In this concept, the test train covers the center 98.8 cm of the 122-cm-tall core.
Staying away from the edges of the core reduces flux gradients on the end capsules. The XE-7 capsule is
placed just below core mid-plane, which is the highest flux position. The ATR flux is slightly
asymmetric, with the highest flux being just below core mid-plane.
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The XE-8 pebble is slated to contain DTF fuel and is placed in the bottom capsule where there are no
thru-tubes. This was deemed the best location because thru-tubes tend to break up the symmetry and
might create difficulties in measuring the fission product concentrations in the graphite holders. As shown
in Figure 6, this bottom capsule will incorporate a spherical graphite shell (built from two half-shells)
around the pebble to capture fission products emanating from DTF particles embedded in this particular
pebble.

This axial layout incorporates fairly generous plenum regions between capsules, making it easier to
bend the thermocouples coming out of the capsule heads and into the thru-tubes. Putting less-severe bends
in the thermocouples is thought to improve the thermocouples’ survivability; however, if the plenum
heights were reduced, it would allow the top and bottom pebbles to be moved a few centimeters closer to
core mid-plane with a concomitant increase in neutron flux for these outboard capsules.

2.4 Neutronics Evaluations

Scoping physics calculations were performed based on the conceptual test train design presented in
previous sections of this report. Each pebble was modeled with an outer diameter of 6.0 cm. The spherical
pebbles have a central fuel meat surrounded by a graphite rind. The 5.0-cm-diameter fuel meat contains
TRISO particles embedded in a graphite matrix. The rind is made up of an all graphite matrix with a
0.5-cm thickness.

The TRISO particle design and enrichment are identical to the particle design used in the AGR-5/6/7
irradiation test. The uranium in the 425-um UCO kernel is enriched to 15.5 wt% U-235. The fuel meat
volume (65.45 cm?) is assumed to contain 18,000 TRISO particles to give a particle packing fraction of
approximately 9.15%. Each pebble then contains 1.12 g U-235, 6.08 g U-238, and 7.22 g U total. In the
Monte Carlo N-Particle model, the fuel meat was homogenized for simplicity.

The physics calculations were performed for nine 50-day cycles for a total of 450 days of irradiation.
The northeast lobe power was gradually increased from 14 MW to 20 MW. For the first eight cycles, the
stepped 0.45-cm-thick filter described in Section 2.3 was used. The constant thickness 0.32-cm-thick
filter was used only for the final cycle. As the design matures, it is likely that the thinner filter will be
scheduled to be put into service earlier, which will increase the burnup rate and reduce the total fast
fluence accumulation.

Figure 7 shows the cycle-by-cycle burnup accumulation for each pebble given the lobe powers, as
shown in the upper right-hand corner. The pebble locations are denoted by the eight node marks on each
of the curves. As illustrated in the figure, the four center pebbles achieve the goal of 16% FIMA by the
end of the ninth cycle, or at approximately 450 days of irradiation. This goal could possibly be achieved
up to one full cycle earlier by deploying the light filter at perhaps as early as the sixth cycle.
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Figure 7. End-of-cycle average pebble burnup (% FIMA) versus the ATR power cycle.

Figure 8 shows the cycle-by-cycle fast fluence accumulation for each pebble given the lobe powers,
as shown in the upper right-hand corner. All pebbles reach the minimum fast fluence goals provided in
Table 1 at the end of 450 days of irradiation. However, pebble 4 slightly exceeds the 7.5 x 10*' n/cm?-sec
fast fluence limit given in Table 1. This problem could be overcome by employing the light filter earlier,
which would have the effect of softening the spectrum and allow for reaching the 16% FIMA goal prior to

hitting the fast fluence limit.
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Calculated volumetric heat rates for each pebble for cycles 1, 5, and 9 are provided in Table 3. Note
that these heat rates are reasonably constant for each pebble over the three cycles, indicating that the
strategy of increasing power and changing filters produces a fairly flat power profile, which is a great aid
in maintaining constant temperature throughout the irradiation period. The maximum volumetric heat rate
of 53 W/cc occurs in Pebble 4 in the first cycle. The corresponding particle power for this heat rate is
194 mW, which is nearly identical to the peak particle power in AGR-5/6/7, and is comfortably under the
established 300 mW peak particle power limit.
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Table 3. Volumetric Heat Rate of Fuel Meat.

Cycle 1 Cycle 5 Cycle 9
Pebble 14 MW Lobe Power 16 MW Lobe Power 20 MW Lobe Power
(W/cc) (W/ce) (W/cc)
1 34.4 31.8 30.2
2 46.9 41.1 40.2
3 52.2 443 42.5
4 53.0 44.7 441
5 52.7 44.7 43.7
6 49.8 429 42.0
7 44.5 39.8 39.7
8 30.3 29.1 29.0

2.5 Thermal Evaluation

Scoping thermal calculations were performed to verify that the desired temperature distributions can
be achieved by means of reasonably sized temperature control gas gaps (e.g., 0.025 — 0.15 cm). A coupled
temperature-displacement analysis was performed in order to account for heat generation, thermal
expansion, and irradiation-induced shrinkage of graphite. The effect of the helium-neon gas mixture on
the gas gap conductance and the effect of neutron fluence on the thermal conductivity and shrinkage of
the graphite was included in the analysis. The results of the analysis were used to determine the gas gaps
and gas mixtures needed to attain the desired temperature distribution in the pebbles.

The thermal analysis was performed at three irradiation cycles (i.e., the first, fifth, and ninth cycles) to
encompass the anticipated conditions of reactor power and neutron fluence occurring during irradiation.
The heat generation rates used in the analysis were obtained from a separate reactor physics analysis
described in the previous section. The ATR northeast lobe power was assumed to be 14 MW in cycle 1,
16 MW in cycle 5, and 20 MW in cycle 9 in order to compensate for diminishing heat generation due to
fuel burnup.

The desired temperature distribution in the pebbles, given in terms of the desired fraction of fuel
particles in each temperature range, is provided in Table 2.

The experiment consists of 6 capsules, each of which is designed to contribute fuel particles in a
particular temperature range. XE-6 consists of capsules 2, 4, 5, and 6; XE-7 consists of capsule 3; and
XE-8 consists of capsule 1. Capsules 2 and 5 contain two pebbles, while all other capsules contain one
pebble.

A finite element temperature-displacement analysis of the XE-6/7/8 experiment was performed using
ABAQUS. A cutaway view of the model geometry and finite element mesh of one of the experiment
capsules is shown in Figure 9. In this figure, the capsule is blue, the holder is green, the pebble is red, and
the zirconia insulators are orange. The neutron filter and primary coolant are not shown. A cutaway view
of the temperature distribution throughout the entire in-core test train at the middle of the first cycle is
shown in Figure 10.

11
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Figure 9. Model geometry and finite element mesh in a cutaway view of an experiment capsule.
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XE-6/7/8 Experiment Temperature (deg C)
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Figure 10. Temperature (°C) of experiment capsules in cycle 1 in a cutaway view.

A closer examination of the finite element analysis results revealed that the temperature of the capsule
top and bottom heads was too high due to gamma heating of the heads during high power cycles. The
original design included stainless steel flat heads. A cutaway view of the temperature of capsule 3 during
cycle 9 at 20 MW NE lobe power using the flat head design is shown in Figure 11. The maximum
temperature of the heads is 1345°C, which is too close to the melting temperature of stainless steel
(1400°C).
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Capsule 3 (XE-7) term)eralure (degrees C)
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using the capsule flat head design
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Figure 11. Temperature (°C) of capsule 3 using the flat head design, shown in a cutaway view.

The ABAQUS model was modified to reduce the thickness at the center of the heads and replace the
stainless steel with nickel in the center portion of the head. Nickel has a higher thermal conductivity and a
higher melting temperature than stainless steel. A cutaway view of the temperature of capsule 3 during
cycle 9 at 20 MW NE lobe power using the modified head design is shown in Figure 12. In this case, the
maximum temperature of the heads is 899°C, so the modified design is effective in reducing the
temperature to an acceptable level. However, this particular bi-metallic head design has not previously
been incorporated into any INL reactor experiment; as such, some engineering and weld procedure
development will need to be done as a part of the final design process.
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Figure 12. Temperature (°C) of capsule 3 using the modified head design, shown in a cutaway view.

Thru-tubes containing thermocouples and gas-lines pass through the capsule and graphite holder. A
cutaway view of the temperature of capsule 3 during cycle 1 at 14 MW NE lobe power is shown in
Figure 13. The approximate location of a thru-tube is shown in the figure. The maximum temperature of
the capsule components at the location of a thru-tube is approximately 1200°C, which is at least 200°C
too hot for the thermocouples passing through it. The proposed solution to this problem is to separate the
graphite fuel holder into two pieces as was done for AGR-7. As shown in Figure 14, a small clearance
would be established between the two layers, which will serve to reduce the temperature in the outer layer
(as it did for AGR-7).
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Figure 13. Temperature (°C) of experiment capsule 3 at the proposed location of a thru-tube, shown in a
cutaway view.
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Figure 14. Two gas gaps to reduce temperatures in thru-tubes.

Graphs of the fraction of particles in each temperature range at cycles 1, 5, and 9 are shown in
Figure 15 (XE-6), Figure 16 (XE-7), and Figure 17 (XE-8), respectively. A graph of the gas mixtures
needed at cycles 1, 5, and 9 is shown in Figure 18. The results of this analysis indicate the gas mixtures
can be adjusted to maintain desired pebble temperature distribution. The irradiation begins with using a
50% helium/50% neon gas mixture in all capsules. The helium content increases during irradiation to
compensate for irradiation-induced shrinkage of graphite and the reduction in thermal conductivity of
graphite. Note that cycle 9 at 20 MW lobe power may require close to 100% helium to control the pebble
temperature. However, the actual gas mixtures used during irradiation may be different from those given
here, due to uncertainty in the gas gaps and reactor power. Additional adjustments available during
irradiation include the lobe power and the thickness of the neutron filter.
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Figure 16. Fraction of fuel particles in each temperature range of XE-7.
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Figure 18. Fraction of helium in temperature control gas in XE-6/7/8.

This analysis shows that the desired temperature distribution can be attained using gas gap
temperature control with a separate He-Ne temperature control gas in each capsule. The inside and
outside diameter of the graphite holders at room temperature are shown in Table 4. The holder in
capsule 1 consists of an inner ring and an outer ring with a gas gap between them. The diameter of the
pebbles is 6.00 cm, while the inside diameter of the capsules is 8.85 cm. The resulting temperature control
gas gaps at room temperature varies from 0.025 to 0.075 cm, which is within the desired range previously
stated.
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Table 4. Diameter (cm) of Graphite Holders.

Holder . Outside Diameter at Room Inside Diameter at Room
Number Experiment Temperature Temperature
1 (inner layer) XE-8 7.356 6.010
1 (outer layer) XE-8 8.725 7.417
2 XE-6 8.725 6.010
3 XE-7 8.700 6.010
4 XE-6 8.750 6.010
5 XE-6 8.760 6.010
6 XE-6 8.801 6.010

2.6 Instrumentation

The design illustrated in Section 2.3 (see also Figure 14) relies on the concept of “thru-tubes,” which
are metallic conduits passing through the bodies of the capsules to provide a means of routing the
thermocouples from lower capsules up through the bodies of upper capsules. The thru-tubes are used to
separate the gas in the capsules from the gas in the thru-tubes and the gas plenums between the capsules.
This arrangement allows for each capsule to have an isolated gas environment. The number and size of
the thermocouples are limited by the number and diameter of the thru-tubes. This layout assumed four
thru-tubes with outer and inner diameters of 8.3 mm and 7.7 mm, respectively. With this design, there is
sufficient room for seven or eight 1.5-mm-diameter thermocouples and two 1.5-mm gas lines in each
capsule. Figure 5 shows typical locations of thermocouples and gas lines.

In Figure 6, the thermocouples are shown terminating in the both the graphite holders a few
millimeters from the pebbles themselves, and in the unfueled rind material of the pebbles. Placing a few
thermocouples in the rinds of some of the pebbles will be advantageous from the standpoint of reducing
the uncertainty in the pebble fuel temperature. However, this would complicate assembly and perhaps
post irradiation examination (PIE) as well.

In either location, depending on the thermocouple sheath material, it may be necessary to place a
protective sleeve between the thermocouple sheath and the graphite holder (or pebble rind). Experience
with AGR-2 indicates that TRISO particle SiC failure can be induced by nickel attack. The source of the
nickel was apparently from thermocouples placed within 2 or 3 mm of the fuel compacts. Because nearly
all thermocouple sheaths incorporate large amounts of nickel (or other first-row transition elements), the
AGR series of experiments took the precaution of sleeving all standard thermocouples with refractory
metal tubes.

Figure 5 shows neutron fluence wires within tubes welded at four locations around the filter housing.
An advantage of placing the fluence wires external to the experiment is that they can be read after each
reactor cycle and compared with the as-run physics analyses. This arrangement was adopted for the
AGR-3/4 and AGR-5/6/7 experiments.

Including fluence wires within the capsules themselves is also an option. Having fluence wires closer
to the fuel is definitely and advantage, however they cannot be read until the test is entirely completed.
Retrieval and reading and reading of the wires would add to the PIE cost.
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2.7 Experiment Sizing and Shipping

It is assumed that the XE-6/7/8 experiment will be shipped to the Materials and Fuels Complex on the
INL Site for PIE. The AGR-3/4 test was shipped using the GE-2000 cask with an INL cask liner.
AGR-5/6/7 is planned to be shipped using an INL site-only cask called the Dry Transfer Cubicle Cask
Insert (DTCCI) with overpack, which is likely to be the shipping method that will work best for XE-6/7/8.
Due to the length of the GE-2000 cask, the maximum test length that could be shipped for AGR-3/4 was
about 109 cm. AGR-3/4 was longer than this and required two shipments because it had to be cut into two
pieces. Plans are to also cut AGR-5/6/7 into two pieces and ship them separately. In the current layout,
XE-6/7/8 is about 15 cm shorter than the two AGR tests. As such, it may be possible to ship the entire
core section in one shipment.

3. SUMMARY AND RECOMMENDATIONS

1. The in-core design consists of six capsules with four capsules housing a single pebble and two with
double pebbles for a total of eight pebbles in the test train. The test train diameter is 9.55 cm, and the
overall in-core length is about 109 cm.

2. The above-core portion of the test would be very similar to AGR-5/6/7, with some components being
identical to the AGR-5/6/7 experiment.

3. Instrumentation for the XE-6/7/8 test would be similar to the AGR-5/6/7 test, consisting of
approximately seven 1.5-mm thermocouples per capsule and four fluence wires external to the
capsule.

4. The scoping physics and thermal analyses performed for this study indicate that the experiment goals
likely can be met in about 450 days of irradiation. Depending on the final design configuration,
refinements to the neutron filter schedule, and the ATR NE lobe powers, it may be possible to shorten
the irradiation period by one ATR cycle.

5. INL recommends that the XE-8 capsule be placed at the bottom of the test train because this position
does not require thru-tubes and would allow for a spherical graphite shell to be placed around the
pebble to capture the fission products.

6. Two changes to the basic capsule design were identified as a part of the thermal analysis: (1) the
XE-7 graphite fuel holder will need to be separated into two pieces to produce a temperature
reduction in the region of the holder where the thru-tubes pass; and (2) the capsule heads must be
modified to reduce the centerline temperature; one method identified to do this is by welding in a
tapered nickel insert.

4. REFERENCES

1. FOR-368, “Functional and Operational Requirements for the XE-6/7/8 Irradiation Experiment,”
Rev. 0, June 2018.
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Appendix A —
XE-6/7/8 Conceptual Design Drawings
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AS SHOWN. NOTE THAT LABELS MUST BE DESIGNED SUCH THAT THEY CAN PASS THROUGH THE THRU 23
TUBES DURING CAPSULE TRAIN ASSEMBLY.
TEMPORARILY MARK GAS LINES PER STD-13122-18 OR 19 WITH: 22
GL-X-IN OR QUT. WHERE "X" IS THE CAPSULE (ASSEMBLY) NUMBER AND "IN" OR "OUT" DENOTES WHETHER THE LINE IS
SUPPLY OR EXHAUST 1 FUEL PEBBLE /¢ AS DIRECTED BY PROJECT 21
A INSTALL ITEM 21 (FUEL PELLET) PER CAPSULE ASSEMBLY LOADING INSTRUCTIONS. e — THE%MOCOUPL‘EGTYFEOST%N 5
11\, GRAPHITE PER GGI-770. B 10254 IMM35 PYG 24| | o o s e SULATION IDAHO LABS CORP @
PRIOR TO ASSEMBLY, COAT INSIDE WALL (3.484 [@8.885]) OF ITEM 7 (CAPSULE BODY) WITH TWO COATS OF ITEM 24 TUBING, .062 OD +.002 X
(NECLUEE) AR 016 £ 002 WALL % 10 FT LG MIN, -
304/304L SST, SEAMLESS
ASME B&PY CODE SECTION Ill, CLASS 3 MATERIAL ASTM A213
14. QUALITY LEVEL DETERMINATION PER ATR COMP-000007, UNLESS OTHERWISE SPECIFIED. 18
QUALITY LEVEL DETERMINATION PER RTC-000485.
17
APPLY A THIN COAT OF ITEM 33 (NEQLUBE) TO THE BOTTOM 1/2" OF ITEM 14 (THRU TUBES) PRIOR TO ASSEMBLY.
FLARE THE BOTTOM OF ITEM 14 {THRU TUBES} AT -1 ASSEMELY. AR - TC SLEEVE TUBING, .085 OD X 010 WALL 1q
: MOLYBDENUW 89.95% PURE
AFTER CUTTING TQ LENGTH, TOTAL DIAMETRAL VARIATION (QD), PART TO PART, OF ITEM 14 (THRU TUBES), MUST BE
LESS THAN 001 INCH. DIAMETRAL CLEARANCE BETWEEN ITEM 14 AND THE HOLES IN THE ITEM 6 {CAPSULE BODY), AR 45 GAS SLEEVE TUBING, .085 GO X .010 WALL 15
SHALL BE LESS THAN .001. HCLES IN ITEM 6 MAY BE ADJUSTED FROM SPECIFIED DIMENSION TO ACHIEVE THIS MOLYBDENUM 89 85% PURE
CLEARANCE. TUBING, 82em OD X .Dfem WALL,
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NLwRors 8 | Fi | 6 ¥ 4 | 3 | 2 1
REVISIONS
7|6 |8 |a]|3]|2]|1| SHEET
N OTES - Ftt)EFV SS}—{TE\ET#SS REV | DESCRIPTICN | EFFECTIVE DATE:
’ - - - | Rev
1. REMOVE ALL BURRS AND SHARFP EDGES.
2. FOR METAL COMPONENTS, CLEANLINESS PER STD-7022, LEVEL C. FOR GRAPHITE COMPONENTS CLEANLINESS, SEE NOTES 3
&4.
3. CARE SHOULD BE TAKEN TO AVOID CONTAMINATING GRAPHITE COMPONENTS DURING FABRICATION AND ASSEMBLY. WASH
ALL TOOLS WITH ALCOHOL PRIOR TO USE, AND HANDLE GRAPHITE WITH CLEAN, WHITE, LINT FREE, COTTON GLOVES. DO NOT
D FABRICATE USING ANY CUTTING LUBRICANTS.
4. PRIOR TO ASSEMBLY, CLEAN GRAPHITE COMPONENT AS FOLLOWS:
WEARING CLOTH OR NITRILE GLOVES, REMOVE ALL DUST AND DEBRIS USING AN AEROSOL PRESSURIZED DUST-OFF
PRODUCT. THEN, ULTRASONICALLY CLEAN IN DE-IONIZED WATER FOR 20 MINUTES. RINSE WITH ALCOHOL AND ALLOW TO AIR
DRY. DRY COMPONENTS IN A LABORATORY OVEN AT 130°C IN AIR FOR 2 HOURS. ALL HANDLING AFTER CLEANING SHALL BE
DONE USING CLEAN, DRY, LINT FREE, WHITE COTTON GLOVES.
5. PRESERVE AND PROTECT PER STD-7020, CLASS 1.
A MARK PER STD-13122-3D1 WITH "CAP-1". USING 3/16 HIGH CHARACTERS, IN LOCATION APPROXIMATELY AS SHOWN.
BRAZE ALL THERMOCOUPLES AND GAS LINES RUNNING THRU ITEM 8 {CAPSULE TOP HEAD) PER INL 812,10 AND 81211, USING
ITEM 25 {BRAZE FILLER METAL). VISUALLY INSPECT ACCESSIBLE PORTIONS OF THE BRAZES WITH ACCEPTANGE CRITERIA PER BRAZE FILLER METAL,
THE FOLLOWING: AR BNL1z AWS 58 WALL COLMONGY CORP 25
— 1. ENSURE A COMPLETE 360° FILLET ARQUND EAGH TC AND GAS LINE ON EITHER THE TOP OR BOTTCOM OF ITEM 8
/3\ TEMPORARILY MARK THERMOCOUPLES PER STD-13122-18 OR 18 WITH: A NEOLUBE No: T OR a2 HUHCNINDOSTHIES 25
TC-X-Y. WHERE "X" IS THE CAPSULE (ASSEMBLY) NUMBER AND "Y" DENOTES THE POSITION IN THE CAPSULE
AS SHOWN. NOTE THAT LABELS MUST BE DESIGNED SUGH THAT THEY CAN PASS THROUGH THE THRU 23
TUBES DURING CAPSULE TRAIN ASSEMBLY.
TEMPORARILY MARK GAS LINES PER STD-13122-18 OR 19 WITH: 22
GL-X-IN OR OUT. WHERE "X" |8 THE CAPSULE (ASSEMBLY) NUMBER AND “IN" OR "OUT" DENOTES WHETHER THE LINE IS
SUPPLY OR EXHAUST. 1 FUEL PEBBLE AS DIRECTED BY PROJECT 21
A INSTALL ITEM 21 (FUEL PEBBLE} PER CAPSULE ASSEMBLY LOADING INSTRUCTIONS. S — TJ;E%%%GEUUEZLEL‘GTWEOSIL[S’ﬁLATION O oo
4 | 22 LG, Mgl 3 IDAHC LAB RP 20
GRAPHITE PER GGI-770 TO 264" IMM-36 PVGC 24
| 600 SHEATH, ASTM E235
C PRIOR TO ASSEMBLY, COAT INSIDE WALL (&3.484 [8.885]) OF ITEM 7 (CAPSULE BODY) WITH TWO COATS OF ITEM 24 TUBING, .082 0D +.002 X
{NEOLUBE) AR 016 + 002 WALL X 10 FT LG MIN g
304/304L SST, SEAMLESS
13%\ ASME B&PY CODE SEGTION I, GLASS 3 MATERIAL. ASTM A213
14. QUALITY LEVEL DETERMINATION PER ATR COMP-000007, UNLESS OTHERWISE SPECIFIED »
QUALITY LEVEL DETERMINATION PER RTC-000485
17
16. ALTERNATE UNITS SHOWN IN BRACKETS [ ] ARE IN CENTIMETERS AND FOR REFERENCE ONLY.
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D 4\ ASME B&PV CODE, SECTION IIl, DIV 1, SUBSECTION NF, CLASS 3 MATERIAL.
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